
FROZEN NATURAL ORBITALS: SYSTEMATIC BASIS SET TRUNCATION
FOR COUPLED-CLUSTER THEORY

Andrew G. TAUBE1 and Rodney J. BARTLETT2,*
Department of Chemistry, University of Florida, Quantum Theory Project,
Gainesville, FL 32611, U.S.A.; e-mail: 1 taube@qtp.ufl.edu, 2 bartlett@qtp.ufl.edu

Received March 25, 2005
Accepted June 6, 2005

We are happy to contribute this paper to the Festschrift in honor of Joe Paldus’ 70th birthday and
wish him MANY HAPPY RETURNS!

The method of frozen natural orbital (FNO) basis set truncation for coupled-cluster theory is
described. Numerical comparisons of the FNO potential energy surfaces of a group of small
molecules at the CCSD(T) level in DZP, cc-pVTZ, cc-pVQZ bases show that truncation of up
to 50% of the virtual space yields CC correlation energies that are accurate to 90 or 95%
when added to the full MBPT(2) basis result. The FNO truncation method is also applied to
dimethylnitramine (DMNA): both the equilibrium structure and dimer interactions, yielding
results at the CCSD(T) level in both a DZP and cc-pVTZ basis set that agree with literature
values. CCSD(T) calculations at two possible equilibrium structures of 1,3,5-trinitrohexa-
hydro-1,3,5-triazine (RDX) in a truncated DZP basis are also reported.
Keywords: Coupled-cluster method; Natural orbital; Many-body perturbation theory; RDX;
Reduced computational cost; FNO; Ab initio calculations; Quantum chemistry.

Dimethylnitramine (DMNA) is a model compound for combustion pro-
cesses that occur in more complicated nitramines, such as 1,3,5-trinitro-
hexahydro-1,3,5-triazine (RDX) and 1,3,5,7-tetranitrooctahydro-1,3,5,7-
tetrazocine (HMX). According to experimental data from both solid-phase
X-ray crystallography1 and gas-phase electron diffraction2 measurements, the
equilibrium geometry of DMNA should be planar – C2v. However, single-
molecule theoretical studies have consistently predicted a ground-state
geometry with only Cs symmetry3–6. It has been suggested that these theo-
retical calculations may be more reliable than the experimental results4–6.
Calculations have been performed using a variety of methods: restricted
Hartree–Fock (RHF), many-body perturbation theory (MBPT(2)), multiple
density functional methods (B3LYP, BLYP, PW91) and quadratic configura-
tion interaction with singles and doubles (QCISD) in moderately sized
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bases, e.g. 6-31G* 7 or cc-pVDZ 8. To have confidence in the theoretical pre-
dictions, especially with contradicting experimental data, it is often neces-
sary to include at least through triple excitations (preferably within the
coupled-cluster theory framework) and work in large basis sets.

When DMNA (or RDX or HMX) burns, it is not solely in the gas phase;
ignition occurs in the crystalline solid phase9. Therefore, it is important to
take into account the effect of intermolecular interaction on these mole-
cules. The dimer of DMNA has been calculated at fixed monomer (C2v)
geometry with symmetry-adapted perturbation theory in a cc-pVDZ basis
set10. This study identified five local minima for the interactions between
the fixed monomers using a grid search across both angles and relative sep-
arations between the two monomers of DMNA, by including the effects of
dispersion, exchange, induction and electrostatic interactions between
monomers perturbatively.

In the solid phase, RDX has one of two forms: α-RDX, which has Cs sym-
metry, also called the axial–axial–axial (AAA) boat form, and β-RDX, which
has C3v symmetry, also called the AAA chair form, and is the experimental
structure of the gas-phase RDX molecule. Results at MBPT(2) and various
density functionals appear to agree, although all results are in moderate-to-
small bases11,12. At least one study has questioned whether the α-RDX struc-
ture is a minimum of the lone molecule at all, suggesting instead a twisted
non-symmetric conformation as the second gas-phase minimum13.

To clarify the theoretical confusion, it would be valuable to apply pre-
dictive coupled-cluster theory, which requires at least perturbative triples
(CCSD(T))14–16 and a large basis set (triple zeta or better), to these mole-
cules. The scaling of CCSD(T) with the number of unoccupied (virtual)
Hartree–Fock orbitals is V4, restricting the size of the molecules that can be
computed. There are many attempts at circumventing this computational
barrier, for example, localized orbitals17,18, Cholesky decomposition19, and
the singular value decomposition approach20,21. Finally, R12 coupled-
cluster theory22–24 could provide nearly basis set limit results. Each of these
methods is either complicated (requiring significant modification to stan-
dard programs), requires user input to identify regions that should be corre-
lated with each other, or both.

However, it is well known that linear combination of atomic orbital
(LCAO) basis sets for correlated calculations have significant linear depend-
encies in them. The simplest way to attempt to eliminate the linear de-
pendency is to remove several of the highest energy unoccupied (virtual)
orbitals from a HF calculation. Except for dropping the core orbitals and
the corresponding virtuals, experience has shown that this method is not
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very successful25,26. There have been myriad other attempts at finding a
good way to reduce basis set size for correlated calculations throughout the
development of quantum chemistry25,27–29. Natural orbitals (the eigen-
functions of the single-particle density matrix)30 are known to be the best
way to determine which single particle states are important in the system30,
as recently recognized by the density-matrix renormalization community31.
Since determining natural orbitals for coupled-cluster theory necessitates
solving the full coupled-cluster problem in the full basis, using coupled-
cluster natural orbitals is not a possibility32. Instead, it has long been
known in the CI community that most of their benefit can be gained from
using a MBPT(2) density matrix33–37. It was proposed27,28 by one of us to op-
timize a truncated virtual space by maximizing the MBPT(2) correlation
correction using the second-order Hylleraas functional (an upper bound on
the second-order energy); this was the so-called optimized virtual orbital
space (OVOS) scheme. As an alternative to OVOS, the use of the so-called
frozen natural orbitals (FNOs) for virtual space truncation (for exam-
ple33,35,38–41) was investigated, within the coupled-cluster method, for water
at equilibrium26. Further work showed that for many equilibrium problems,
the FNOs are an exceedingly good set of orbitals for truncation25–28.
Compared to the OVOS procedure, which is based on a purely energetic cri-
terion, the FNO orbitals, derived from the one-particle density matrix, are
less tailored to the energy. Because OVOS requires iterative second-order
perturbation theory calculations, it is significantly more computationally
expensive than the FNO procedure is; the added computational expense
yields only a small improvement in the energy26. The OVOS method has
been recently reinvestigated, with the purely energetic criterion replaced by
an overlap criterion42; this change may lead to less energy-specific OVOS
orbitals, although the computational cost is still high relative to the FNOs.

THEORETICAL METHOD

We determine frozen natural orbitals from a MBPT(2) approximation to the
exact density matrix. First, a Hartree–Fock calculation in the full basis set is
performed yielding a set of occupied and virtual molecular orbitals (MOs)
formed from a linear combination of atomic orbital (AO) basis functions,
denoted by the matrix U (where columns are the MOs and rows are AOs).
Next, the MBPT(2) single-particle density matrix, D, is constructed within
only the virtual space of the MO basis. To determine the frozen natural
orbitals the eigenvalue equation
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DV = Vn (1)

is solved. The columns of V are the FNOs in the MO basis and the value of
the corresponding element of n is the occupation number of that natural
orbital. The relative importance of an FNO is given by this occupation
number, allowing for truncation of the natural orbitals with occupation less
than some cutoff value ncrit. Symbolically,

~
V VT= (2)

T
n n

ij
i=

>



δij crit

otherwise0
. (3)

This reduced set of frozen natural orbitals is then used as a replacement of
the full virtual space. To return the orbitals to canonical HF form43, the
virtual–virtual block of the Fock matrix (in the MO basis), F, is transformed
into the truncated FNO basis and eigenvalue equation for the orbital ener-
gies is solved.

~ ~ ~†F V FV= (4)

~~ ~~FZ Z= ε (5)

The columns of
~
Z are the new canonical virtual MOs in the FNO basis and

the elements of ~ε are the corresponding orbital energies. Back-transforming
into the AO basis,

~ ~~
U U VZvirt virt= (6)

~
U Uocc occ= (7)

where the subscripts virt and occ indicate the virtual and occupied blocks
of the MO matrix, respectively. The matrix

~
U now contains a reduced set of

virtual canonical HF orbitals that can be used in a higher-level treatment of
correlation; in this case, coupled-cluster theory.

To maintain all the desired symmetry and invariance conditions after the
FNO truncation, several conditions were imposed on the truncation matrix.
For unrestricted Hartree–Fock (UHF) references, it was required that the
number of orbitals removed was the same for both α and β spins. Moreover,
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the number of orbitals removed within each irreducible representation of
the molecular point group was required to be the same. Similarly, for both
RHF and UHF references, all degenerate orbitals were treated as a block:
either all were kept or all were removed from the FNO basis.

Although there is no requirement that a canonical HF set of orbitals be
used, the decoupling of the occupied and virtual spaces in Hartree–Fock is
necessary to be able to perform these operations solely on the virtual space.
For more general initial orbitals, the same procedure can be applied but the
entire set of MOs would be required. In these authors’ opinion, for a situa-
tion where a single HF determinant provides a good description of the
ground state, it is advantageous to leave the occupied space unchanged,
and simply truncate the virtual space. Computational scaling of CC is more
severe for virtual orbitals than for occupied orbitals implying greater com-
putational advantage truncating the virtual space and the quality of the oc-
cupied reference is left unaltered. As experience in CI suggests, for cases
with significant multireference character constructing the full set of natural
orbitals from a non-HF initial set of orbitals and truncating may be a better
choice33.

Estimates of Truncation Error

The authors have found it useful to estimate the truncation error. An
MBPT(2) energy calculation is by default run both for the full basis and af-
ter the truncation for the FNO basis. Therefore, we can use the energy dif-
ference between these two second-order calculations as an estimate of the
error inherent in the truncation. Defining

∆MBPT(2) = MBPT(2)[full] – MBPT(2)[truncated]. (8)

This correction can then be added to the total energy as calculated in the
truncated basis to give a better approximation to the exact energy with no
added computational cost.

COMPUTATIONAL DETAILS

The frozen natural orbital truncation scheme has been included into the
ACES II quantum chemistry package44 for RHF and UHF references with real
Abelian symmetry. Non-Abelian point group symmetry (though not han-
dled within most ACES II calculations) was enforced by treating all degener-
ate orbitals as a block. Degeneracy was assumed if two (or more) orbitals
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had occupations that differed by less than 10–6. Most calculations were per-
formed on an IBM RS/6000 POWER3 workstation with a 375 MHz proces-
sor, 3 GB RAM, and 18 GB hard disk. Basis sets used were from the PNL ba-
sis set library45.

Small Molecules

Calculations were run along the symmetric stretch for six small molecules
(HF, CO, F2, H2O, N2 and NH3) at 0.1 Å increments, from a minimum of
0.5 Å to 4Re. Results were obtained from both RHF and UHF reference func-
tions, depending on the desired separated limit, with Hartree–Fock stability
analysis used to stay on the correct adiabatic potential energy surface dur-
ing dissociation.

Energetic Materials

For the larger energetic materials, all calculations were done with the frozen
core approximation, reducing the number of occupied orbitals. To mini-
mize the amount of time and number of orbitals under investigation, all of
these calculations were done with an RHF reference state. For the largest
calculations (DMNA in the full cc-pVTZ basis), 18 GB disk space was not
sufficient and necessitated the use of a 200 MHz processor with 4 GB RAM
and access to storage in excess of 1 TB.

RESULTS AND DISCUSSION

Small Molecules

The quality of frozen natural orbitals for equilibrium properties and for the
dipole moment in coupled-cluster theory has been investigated before25,26.
However, if the FNOs are to be useful for calculating energy differences be-
tween different conformers of molecules and along reaction pathways, the
quality of the FNOs must be maintained across the potential energy surface,
which has also been considered as a special case of OVOS 27. To gauge this
element of the quality, a series of six small molecules were examined across
their potential energy surfaces at the CCSD and CCSD(T) level in the DZP 46,
cc-pVTZ, and cc-pVQZ 8 bases with retention of 20, 40, 60, 80 and 100% of
the virtual orbitals. Average results and timings are listed in Table I.
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The best basis set choice for any calculation is the one that can give you
the greatest percentage of the correlation energy with the quickest calcula-
tion. Figure 1 is a guide for that decision based on the FNO orbital scheme.

The upper-left hand corner of Fig. 1 represents the best possible basis set.
As can be seen, choosing a large basis set and then truncating it using the
FNO framework provides superior results compared to using a smaller basis
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FIG. 1
Percentage of CCSD(T) correlation energy compared to 100% cc-pVQZ result recovered as a
function of the coupled-cluster time relative to 20% DZP calculation as a function of basis set.
� cc-pVQZ, � cc-pVTZ, � DZP

TABLE I
Average percentage of correlation energy for a series of FNO truncations for six small mole-
cules

Virtual orbitals, % DZPa cc-pVTZa cc-pVQZa

20 29.6 61.1 81.2

40 47.3 76.0 94.0

60 58.7 82.2 98.0

80 63.1 85.0 99.2

100 66.0 85.6 100

a Percentage of correlation energy relative to 100% cc-pVQZ result.



set. For example, for the molecules considered, using a 40% cc-pVQZ basis
set would provide both a greater percentage of the total correlation energy
and be a quicker calculation than using the full cc-pVTZ basis set. An illus-
tration of this effect is shown in Fig. 2, which shows four potential energy
curves for the dissociation of hydrogen fluoride at the CCSD level in differ-
ent bases.

The lowest curve is the full 100% cc-pVQZ basis result, the others are
truncations from three different bases. The qualitative form of the PES is
identical in all four cases, indicating that the FNOs provide a balanced
treatment of correlation across the potential energy surface. The best re-
sults, after the full cc-pVQZ basis, are those from a retention of 20% of the
cc-pVQZ basis. This truncated large basis significantly outperforms the
equivalent-sized full DZP basis.

Shifting the energies of these curves so that their equilibria coincide,
shows that not only does using an FNO truncated basis lead to convergence
with total energies, it also leads to convergence in dissociation energies.
Figure 3 shows the dissociative tails of these shifted potential energy sur-
faces; as can be seen, the 20% cc-pVQZ basis comes closest to accurately de-
scribing the dissociation. The full DZP basis underestimates the dissociation
energy by more than 20 mEh, while the 20% cc-pVQZ basis is within 3 mEh
of the full cc-pVQZ dissociation energy.

Energetic Molecules

Two energetic materials were addressed in this study: dimethylnitramine
(both the monomer and dimer) and 1,3,5-trinitrohexahydro-1,3,5-triazine.

Dimethylnitramine (DMNA)

The FNO method was used to measure the relative energy of the two DMNA
isomers that have been predicted/observed. The calculation was performed
in both a DZP and cc-pVTZ basis set, with 60% of the virtual space retained.
For comparison and verification, calculations were also done in the full
DZP and cc-pVTZ basis sets. The results are summarized in Table II.

The agreement between the full cc-pVTZ and truncated cc-pVTZ energy
differences is excellent. Also, note the difference in results at the DZP level
between including and not including the ∆MBPT(2) correction. We conjec-
ture that because there are so many fewer virtual orbitals in a DZP basis
than in a cc-pVTZ basis a greater percentage of those truncated contain a

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

844 Taube, Bartlett:



Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Frozen Natural Orbitals 845

FIG. 3
Hydrogen fluoride RHF CCSD dissociation energy curves for different FNO basis truncations
with the same number of virtual orbitals. � 100% cc-pVQZ, � 20% cc-pVQZ, � 40% cc-pVTZ,
� 100% DZP

FIG. 2
Hydrogen fluoride RHF CCSD potential energy curve for different FNO basis truncations with
the same number of virtual orbitals. � 100% cc-pVQZ, � 20% cc-pVQZ, � 40% cc-pVTZ,
� 100% DZP



significant occupation. Because of this, a correction due to the truncation
level is necessary for a small basis set, but not for a larger basis set.

We also applied the FNOs to investigate the dimer of DMNA. Prior work
had determined, using symmetry-adapted perturbation theory, five minima
structures for rigid geometry C2v monomers10. Using their geometries, we
calculated interaction energies at the CCSD(T) level of theory, comparison
to the SAPT results are shown in Table III.

While the difference in interaction energies between SAPT and CCSD(T)
is only on the order of a few kcal/mol, there is a qualitative difference be-
tween the two results. The energies of minima M2 and M3 are in the oppo-
site order in the CCSD(T) result compared to the SAPT results. Determining
the correct energetic ordering will require validation of the FNO method for
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TABLE III
DMNA dimer RHF CCSD(T) interaction energies at SAPT geometries

SAPT
Minimumb

SAPT
Interaction energyc

CCSD(T)a

Interaction energyc

M1 –11.056 –10.355

M2 –5.934 –3.821

M3 –5.169 –5.602

M4 –4.855 –2.379

a 60% DZP basis + ∆MBPT(2). b For geometries, see ref.10 c Interaction energies in kcal/mol.

TABLE II
DMNA RHF CCSD(T) frozen core energy differences

Basis set used C2v Etot
a Cs Etot

a C2v – Cs
kcal/mol

Total time, h

100% DZP –338.8157 –338.8302 9.09 1.61

60% DZP –338.7549 –338.7671 7.66 0.25

60% DZP + ∆MBPT(2) –338.8078 –338.8220 8.91 0.25

100% cc-pVTZ –339.1252 –339.1399 9.24 52.6b

60% cc-pVTZ –339.1032 –339.1180 9.29 8.80

60% cc-pVTZ + ∆MBPT(2) –339.1283 –339.1431 9.29 8.80

a Total energies are in Eh. b Approximate time taking into account the difference in proces-
sor speed.



interaction energies, full geometry optimization of the dimers at the FNO
level, larger basis sets, consideration of basis set superposition error; and
may require inclusion of iterative triple excitations.

1,3,5-Trinitrohexahydro-1,3,5-triazine (RDX)

Chakraborty et al.13 gave two minima structures for RDX: the AAA chair
and the AAA boat. They performed B3LYP calculations on these minima,
and found that at that level of theory, the AAA chair was 0.75 kcal/mol
lower in energy than the AAA boat. They also found (by performing a vibra-
tional analysis) that the AAA boat was not a minimum for B3LYP. We used
their geometries for both conformers and performed a frozen core RHF
CCSD(T) calculation in a 60% DZP FNO basis. Table IV lists the results.

The energy difference at these two geometries determined by 60%
DZP CCSD(T) is –1.4 kcal/mol, on the same order as the B3LYP result
–0.75 kcal/mol. Further calculations in a (truncated) triple zeta basis and
with full geometry optimization are necessary to definitively determine
which conformation is lower in energy.

CONCLUSIONS

On the basis of the results presented here it is clear that frozen natural
orbitals determined from the MBPT(2) density matrix are an effective
method of basis set truncation. The quality of the basis set truncation does
not appear to degrade at large R as might be expected given that MBPT(2) is
a perturbative method. However, we can equally well use UHF MBPT(2) in
our FNO generation if bond dissociation becomes a problem. More detailed
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TABLE IV
RDX RHF CCSD(T) 60% DZP frozen core energy difference

Calculation AAA chaira AAA boata Chair–boat

Total energyb –895.1732 –895.1728 –0.25

Total energy + ∆MBPT(2)b –895.3311 –895.3289 –1.4

Time, h c 30 145 N/A

Estimated time for full basis, h c 200 1000 N/A

a Geometries from ref.13 b Total energies in Eh, relative energies in kcal/mol. c For cou-
pled-cluster calculation.



analysis has shown that differences between the FNO correlation and the
full correlation energy is roughly constant across the PES 27,28. Because the
total correlation energy is smaller at large R than short R, the percentage of
correlation energy recovered in a truncated calculation increases with in-
creasing R. This percentage increase is small in general (and the smaller the
larger the basis set used) and had no impact on the qualitative features of
the PES in our calculations. As was shown for the case of HF, this slight in-
crease in correlation energy across the PES does not adversely affect the de-
scription of dissociative processes.

The FNOs are a powerful tool toward allowing coupled-cluster theory to
address larger molecules routinely. Most importantly, unlike many linear
scaling or truncation methods, the FNOs require no user analysis of the
molecule to determine what regions of the molecule should be correlated.
Instead, the important interactions are determined by the method itself,
without any input of chemical intuition. Further, the tools necessary to de-
termine and truncate based on the FNOs are already built into coupled-
cluster programs, making it straight-forward to implement.

Current limitations in the ACES II program allow only a maximum of
500 basis functions, restricting the calculation of the FNOs to systems with
fewer orbitals than that. As our results show, if we were able to calculate the
MBPT(2) density matrix with greater than 500 basis functions, truncation
by the FNOs could significantly reduce the number of basis functions for
the coupled-cluster iterations. Therefore, the actual calculation of the
MBPT(2) density matrix is the limiting step in the current implementation.
We plan on interfacing an integral-direct MBPT(2) program that will cir-
cumvent the 500 basis function limit.

To be routinely applicable to all chemical situations, analytical gradients
must be used so that geometry optimization and forces are available. The
equations for FNO analytical gradients have been derived and have been
implemented and tested in the ACES II code47.

This work has been supported the U.S. Army Research Office under MURI (Contract No.
AA-5-72732-B1). A. G. Taube would also like to thank the U.S. Air Force Office of Scientific Research
for support through a National Defense Science and Engineering Graduate Fellowship.
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